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Abstract
The phonon properties of orthorhombic manganites RMnO3 are studied using
a Green’s function technique taking into account anharmonic spin–phonon and
phonon–phonon interaction terms. The strong spin–phonon interaction leads to
anomalies in the phonon energy and the damping around the magnetic phase
transition. The phonon spectrum is discussed for different exchange interaction
J1 and spin–phonon interaction Rsp constants. In dependence on the sign of
Rsp we obtain softening or hardening of the phonon modes with decreasing
temperature below the phase transition temperature TN. This is associated with
phonon modulation of the exchange interaction. It is shown that the phonon
energy and the phonon damping depend on the radius of the rare earth ion rR

and on the ion doping. The influence of the external magnetic field is discussed,
too.

1. Introduction

The rare earth and yttrium manganites, RMnO3, crystallize in two structural phases: the
orthorhombic structure for R with larger ionic radius (R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb or
Dy), while compounds with smaller ionic radius (R = Ho, Er, Tm, Yb, Lu, Y) can be obtained
either in the orthorhombic or the hexagonal structure. A hexagonal-to-orthorhombic phase
structural transition can also take place upon annealing under high pressure. The hexagonal
RMnO3 compounds belong to the class of ferroelectromagnetic materials characterized by
the coexistence of magnetic and ferroelectric orderings [1]. This is not the case in the
orthorhombic RMnO3 compounds where magnetic ordering also occurs but not ferroelectric
ordering. Recently Lorenz et al [2] have found a remarkable increase (up to 60%) of the
dielectric constant with the onset of magnetic order at 42 K in the metastable orthorhombic
structures of YMnO3 and HoMnO3 that proves the existence of strong magnetoelectric coupling
in the compounds. The properties of manganites attracted significant interest since colossal
magnetoresistance was observed in R1−xAx MnO3 (R = rare earth or Y; A = Sr, Ca, Ba,
Pb) [3, 4]. It was recently demonstrated that the magnetic and orbital structures in these
materials depend strongly on the ionic radius rR of the rare earth ion [5–8]. Moreover, with
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decreasing rR the low temperature antiferromagnetic (AFM) ordering changes from A-type
AFM to E-type AFM [6] through an incommensurate structure. It has been shown that the
magnetic ordering below TN in LaMnO3 [9–11] and NdMnO3 [12] results in softening of a
Raman active mode near 610 cm−1, involving mainly in-plane stretching oxygen vibrations.
This softening has been discussed by Granado et al [10] in terms of spin–phonon coupling
caused by phonon modulation of the superexchange integral. It was established from
Laverdiere et al [8] that while the materials RMnO3 with large R3+ ionic radius rR and A-type
AFM order (R = Pr, Nd, Sm) exhibit significant phonon softening and other anomalies with
decreasing temperature near and below TN, the effect of magnetic ordering is much weaker
or negligible in compounds with R = Eu, Gd, Tb, Dy, Ho and Y, characterized by small rR

and incommensurate magnetic structure. But for the In- and Tl-based A2Mn2O7 compounds,
Granado et al [13] have observed a hardening of two of the low-energy phonons below the
ferromagnetic–paramagnetic transition TC. All Raman modes show decreasing frequencies
when going from Y- to In- and Tl-based compounds. In principle, the spin–phonon interaction
plays an important role in many magnetic materials [14, 15]. It renormalizes the spin-wave
and the phonon spectrum. The magnetic ordering influences strongly the phonon energy and
phonon damping and must be taken into account if we want to explain the experimental data.

The aim of the present paper is to study the phonon properties in magnetite compounds
using a Green’s function technique beyond the random phase approximation.

2. The model

The Hamiltonian of the system can be presented as:

H = Hm + Hph + Hsp−ph. (1)

Hm is the Hamiltonian for the magnetic subsystem, which is given by the Heisenberg
Hamiltonian:

Hm = − 1
2

∑

〈i j〉
J1(i, j)Si · S j − 1

2

∑

[i j ]
J2(i, j)Si · S j − gμB H

∑

i

Sz
i . (2)

Si is the Heisenberg spin at the site i , and the exchange integrals J1 and J2 represent the
coupling between the nearest and next-nearest neighbours, respectively. H is an external
magnetic field parallel to the z axis. 〈i j〉 and [i j ] denote the once-summation over the nearest-
and the next-nearest-neighbours, respectively.

In order to investigate the phonon spectrum and the experimentally obtained strong spin–
phonon coupling we have to consider the following two terms in equation (1). The second term
Hph contains the lattice vibrations including anharmonic phonon–phonon interactions:

Hph = 1

2!
∑

q

(Pq P−q + (ω0
q)

2 Qq Q−q) + 1

3!
∑

q,q1

B(q, q1)Qq Q−q1 Qq1−q

+ 1

4!
∑

q,q1,q2

A(q, q1, q2)Qq1 Qq2 Q−q−q2 Q−q1+q, (3)

where Qq , Pq and ω0
q are the normal coordinate, momentum and frequency, respectively, of the

lattice mode with a wavevector q. The vibrational normal coordinate Qq and the momentum
Pq can be expressed in terms of phonon creation and annihilation operators:

Qq = (2ω0
q)

−1/2(aq + a†
−q), Pq = i(ω0

q/2)1/2(a†
q − a−q). (4)
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Hsp−ph describes the interaction of the magnetic spins with the phonons. This is very
important in order to explain the experimental data of Raman and IR spectroscopy lines in
manganites:

Hsp−ph =
∑

q

F̄sp(q)Qq Sz
−q − 1

2

∑

q,p

R̄sp(q, p)Qq Q−p Sz
p−q + h.c., (5)

where

F̄sp(q) = 1√
N

∑

h

1

|h| (eq · h)J ′
1(h) exp(iq · h), (6)

R̄sp(p, q) = 1

N

∑

h

(
J ′′

1 (h) − J ′
1(h)

|h|
)

(ep−q · h)(exp(ip · h) + exp(iq · h)). (7)

The summation extends over the vectors h = ri − r j connecting all possible pairs of spin
sites in the crystal and eq is the polarization of the phonon with wavevector q. Fsp(q) =
F̄sp(q)/(2ω0

q)
1/2 and Rsp(q, p) = R̄sp(q, p)/(2ω0

q)
1/2(2ω0

p)
1/2 designate the amplitudes for

coupling phonons to the spin-wave excitations in first and second order, respectively.

3. The phonon Green’s function

The retarded phonon Green’s function to be calculated is defined as:

G(k, ω) = 〈〈ak; a†
k〉〉, (8)

where ak, a†
k are the phonon annihilation and creation operators. For the approximate

calculation of the Green’s function we use a method proposed by Tserkovnikov [16], which
is appropriate for spin problems. After a formal integration of the equation of motion for the
Green’s function one obtains

Gi j(t) = −iθ(t)〈[ai; a†
j ]〉 exp(−iωi j(t)t) (9)

where

ωi j (t) = ωi j − i

t

∫ t

0
dt ′t ′

( 〈[ ji(t); j †
j (t

′)]〉
〈[ai(t); a†

j (t
′)]〉 − 〈[ ji(t); a†

j (t
′)]〉〈[ai (t); j †

j (t
′)]〉

〈[ai(t); a†
j (t

′)]〉2

)
(10)

with the notation ji(t) = 〈[ai , Hint]〉. The time-independent term

ωi j = 〈[[ai , H ]; a†
j]〉

〈[ai; a†
j ]〉

(11)

is the energy in the generalized Hartree–Fock approximation (GHFA). The time-dependent
term in equation (10) includes damping effects.

The modulation of the spin-wave energy E (equation (18)) and exchange interaction
constant J1 (equation (19)) by specific zone-centre lattice vibrations is responsible for a
spin–phonon coupling, manifested by a renormalization of the phonon frequencies below the
magnetic ordering temperature TN. We have calculated the phonon energy beyond the RPA and
obtain the following expression which is renormalized due to the spin–phonon interaction:

ω(k)2 = ω2
0 − 2ω0

(
M2 Rsp(k) − 1

2N

∑

q

A(k, q)(2N̄q + 1) − B(k)〈Q(k)〉δk0

)
, (12)

with

〈Q(k)〉 = M2 Fsp(k) − 1
N

∑
q Bkq(2N̄q + 1)

ω0 − M2 Rsp(k) + 1
N

∑
q Akq(2N̄q + 1)

. (13)
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ω(k) contains the phonon energy ω0, a term due to the spin–phonon interaction (caused
by the modulation of the exchange integral by lattice vibrations) and two terms due to the
phonon–phonon interactions (including lattice expansion/contraction due to anharmonicity
and/or magnetostriction effects). M = 〈Sz〉 is the relative magnetization and is calculated from
the spin Green’s function. Above the phase transition temperature the spin–phonon interactions
do not contribute to the phonon energy because M vanishes; only the anharmonic phonon–
phonon interactions remain.

The phonon damping is calculated as:

γ (k) = γph−ph(k) + γsp−ph(k). (14)

For the damping due to the phonon–phonon interactions we have

γph−ph(k) = 3π

N

∑

q

[B2(q,−k, k − q) + B2(q, k − q,−q)](N̄q − N̄k−q )

× [δ(ωk − ωq − ωk−q ) + δ(ωk − ωq + ωk−q )]
+ 4π

N2

∑

q,p

A2(q,−k, p, k − q + p)[N̄p(1 + N̄q + N̄p+k−q ) − N̄q N̄p+k−q ]

× δ(ωk − ωq + ωp − ωk+p−q ). (15)

γsp−ph is the damping due to the spin–phonon interactions:

γsp−ph(k) = 4π M2

N

∑

q

F2
sp(q, q − k)(m̄q − m̄q−k)δ(Eq−k − Eq − ωk)

+ 4π M2

N2

∑

q,p

(R2
sp(−k, p, q)(m̄q − m̄ p)[(1 + N̄k+p−q )

× δ(E p − Eq − ωk+p−q + ωk) + N̄q−k−pδ(E p − Eq + ωq−k−p + ωk)]
+ [R2

sp(−k, p, q) + R2
sp(k − q + p, p, q)]m̄q(1 + m̄ p)

× [δ(E p − Eq − ωk+p−q + ωk) − δ(E p − Eq + ωq−k−p + ωk)])
+ π

N2

∑

q,p

[R2
sp(−k, p, q) + R2

sp(k − q + p, p, q)]〈Sz
p Sz

−p〉〈Sz
q Sz

−q〉

× [δ(E p − Eq − ωk+p−q + ωk) − δ(E p − Eq + ωq−k−p + ωk)], (16)

where N̄q = 〈a†
q aq〉 and m̄q = 〈S−

q S†
q〉 are correlation functions which are calculated via the

spectral theorem. At low temperatures the main contribution to the damping comes from the
spin–phonon interaction, whereas in the vicinity of and above the phase transition temperature
only the anharmonic phonon–phonon interaction terms remain.

The relative magnetization M is given for arbitrary spin value S by

M = 1

N

∑

k

[(S + 0.5) coth[(S + 0.5)β E(k)] − 0.5 coth(0.5β E(k))], (17)

where E(k) is the renormalized spin-wave energy. It is calculated in the generalized Hartree–
Fock approximation from the retarded Green’s function g(k, E) = 〈〈S†

k; S−
k 〉〉 to:

E = gμB H + 1

2〈Sz〉
1

N

∑

q

(J eff
1 (q) − J eff

1 (k − q))(2〈Sz
q Sz

−q〉 − 〈Sz
k−q S†

k−q 〉)

+ 1

2〈Sz〉
1

N

∑

q

(J2(q) − J2(k − q))(2〈Sz
q Sz

−q〉 − 〈Sz
k−q S†

k−q 〉). (18)

4
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Figure 1. Temperature dependence of the phonon energy ω for T = 40 K and the following spin–
phonon interaction constant: Rsp = 10 cm−1.

The spin exchange interaction constant between next-neighbours J1 is renormalized due to the
spin–phonon coupling to J eff

1 :

J eff
1 = J1 + 2F2

sp

ω0 + 0.5A − M Rsp
. (19)

4. Numerical results and discussion

In this section we shall present the numerical calculations of our theoretical results taking the
following model parameters which are appropriate for PrMnO3 with TN = 97 K: J1 = 108 K,
J2 = −60 K, A = −1 cm−1, B = 0.5 cm−1, Fsp = 10 cm−1, S = 2. We have calculated
the temperature dependence of the phonon energy for k = 0 and different anharmonic spin–
phonon interaction constants Rsp, which can be positive, Rsp > 0, or negative, Rsp < 0 [14].
The frequency shift below the phase transition temperature can be explained only if we assume
a spin-dependent force constant given by the first and second derivatives of the exchange
interaction J1(ri − r j ) between the i th and j th ions with respect to the phonon displacements
ui , u j . This displacement is interpreted by taking the nearest-neighbour exchange integral
J1(ri − r j ) and the next-nearest-neighbour exchange integral J2(ri − r j ). The squared
derivatives of J1 and J2 with respect to the phonon displacement can have opposite signs. This
can be connected with the interaction and competition of the hybridized Mn d-states. There are
both ferromagnetic and antiferromagnetic contributions that differ for in-plane and out-of-plane
neighbours. But the competition between the exchange interaction of nearest- and next-nearest-
neighbours is only one of the possible explanations. In principle, the different sign of Rsp can
also be connected with different strains due to the influence of defects, ion doping, mechanical
strain and with different ordering in the layers and between the layers in thin films etc.

The temperature dependence of the phonon energy for different spin–phonon interaction
values is shown in figures 1 and 2. For positive Rsp values we obtain softening of the
phonon mode with decreasing temperature, whereas for Rsp < 0 we have hardening of the
phonon mode, i.e. the phonon energy is spin dependent. The obtained anomalous softening or
hardening of the phonon modes is associated with the magnetic ordering. The demonstrated

5
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Figure 2. Temperature dependence of the phonon energy ω for T = 40 K and the following spin–
phonon interaction constant: Rsp = −10 cm−1.

temperature behaviour of the phonon mode in the first case, Rsp > 0, is measured in the
phonon spectra of RMnO3 by Laverdiere et al [8], whereas the second case, Rsp < 0,
could explain the hardening of the phonon energy observed in A2Mn2O7 by Granado et al
[13]. The exchange interactions in La-doped CaMnO3 are studied using Raman scattering
and electron paramagnetic resonance by Granado et al [16]. Dramatic reductions in the spin–
phonon interactions and magnetic correlations are observed. All the modes broaden as the La
concentration increases [16]. It can be seen from figures 1 and 2 that there is an anomaly,
a kink around the magnetic phase transition temperature TN = 97 K, which arises from the
anharmonic spin–phonon interactions. The phonons show a magnetic shift below TN, where the
rare earth moments in RMnO3 start to order. Above TN, where only the anharmonic phonon–
phonon interactions remain, the phonon energy slightly decreases.

The shift of the phonon spectra is dependent not only on the sign of the anharmonic
spin–phonon interaction constant Rsp but also on the magnitude of Rsp (which is indirectly
connected with the radius of the rare earth ion). This is demonstrated in figures 3 and 4. With
increasing spin–phonon coupling Rsp the phonon frequency decreases linearly (figure 5). This
is in accordance with the experimental data of Laverdiere et al [8]. They have shown that
the sign and magnitude of the phonon shift appear to be correlated with the ionic radius of
the rare earth ion rR, evolving from softening for a larger radius to hardening for a smaller
radius. Our spin–phonon interaction constant Rsp is connected through the first and second
derivatives with the exchange interaction constant J1(ri − r j ) which depends on the distance
between the neighbouring spins. So it can be smaller when the distance is bigger, i.e. the
radii of the ions are smaller, or greater for smaller distance, i.e. bigger radius. So we have
different Rsp values in different compounds. Our theoretical results are in accordance with the
experimentally obtained correlation of the phonon shift with the ionic radius of the rare earth
ion. With decreasing Rsp, i.e. with decreasing radius of the rare earth ion rR, the anomaly
around TN is smaller, for example for Y where the effect of magnetic ordering is much weaker.
This is in agreement with the experimental data of Laverdiere et al [8] in RMnO3 and those
of Granado et al [13] in A2Mn2O7. It is plausible to expect that the changes with rR of the
lattice distortions and magnitude structure will be reflected in changes of the phonon parameters
and their variations near magnetic ordering temperature. The phonon energy shows a strong

6
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Figure 3. Temperature dependence of the phonon energy ω for T = 40 K and different spin–phonon
interaction constants: (1) Rsp = 2, (2) 6 and (3) 10 cm−1.

Figure 4. Temperature dependence of the phonon energy ω for T = 40 K and different spin–phonon
interaction constants: (1) Rsp = −2, (2) −6 and (3) −10 cm−1.

analogous dependence on the exchange interaction constant J1 (ri –r j ), which depends on the
distance between the spins and indirectly on the radius of the ions. ω decreases with increasing
of J1 (figure 6). It is evident from these results that frequency anomalies of the phonon modes
may be expected as a consequence of magnetostrictive effects. Therefore, the anomalous
softening or hardening shown in figures 1–4 may also be caused by a change in the lattice
parameters at TN. The magnetic phase transition temperature TN decreases with decreasing
exchange interaction J1 (figure 7), i.e. with decreasing radius of the rare earth ion rR. This is in
accordance with the experimental data for RMnO3 of Laverdiere et al [8] and Kimura et al [5].
They have observed that TN decreases from 97 K for PrMnO3 to 76 K for NdMnO3 and 60 K
for SmMnO3.

The phonon damping γ can be observed from the full width at half maximum in Raman
spectroscopic experiments. We have calculated numerically γ in dependence on temperature

7
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Figure 5. Dependence of the phonon energy ω on the anharmonic spin–phonon interaction constant
Rsp for T = 40 K.

Figure 6. Dependence of the phonon energy ω on the exchange interaction constant J1 for
Rsp = 10 cm−1 and T = 40 K.

and different interaction constants. The results are shown in figures 8 and 9. The damping
increases with T → TC (figure 8). It is clearly seen that around the phase transition temperature
TN there are strong anomalies, which is in agreement with the experimental data of Granado
et al [9]. We obtain that the damping increases with Rsp (for the two cases Rsp > 0 and
Rsp < 0, because the damping is proportional to R2

sp). γ decreases with increase of the
exchange interaction constants J1, too (figure 9). So, the phonon damping can be different
for different exchange and spin–phonon interaction constants, i.e. different for substances with
different ionic radii and doping concentrations. This is in accordance with the experimental data
of Granado et al [9, 17], that the A1g mode R1−x AxMnO3 (R = La, Pr; A = Ca, Sr) is very
sensitive to defects of the crystal lattice and that all modes broaden as the La concentration in
CaMnO3 increases.

8
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Figure 7. Dependence of the phase transition temperature TN on the exchange interaction constant
J1 for Rsp = 10 cm−1.

Figure 8. Temperature dependence of the phonon damping γ for different values of the magnetic
spin–phonon interaction constant Rsp: (1) Rsp = 2, (2) 6 and (3) 10 cm−1.

The discussion above was made for H = 0. The influence of an applied magnetic field H
on the phonon energy can be seen in figures 10 and 11. The phonon energy ω can increase
or decrease with increasing H in dependence of the sign of the anharmonic spin–phonon
interaction constant. ω is enhanced for large magnetic fields for Rsp < 0 and reduced for
the opposite case, Rsp > 0. The phonon damping always decreases for the two cases of Rsp

with increasing applied magnetic field H (figure 12).

5. Conclusions

We have calculated the phonon spectrum in A-type manganites taking into account anharmonic
spin–phonon and phonon–phonon interaction terms. We have obtained for the first time
the temperature dependence of the phonon spectrum including damping effects for different

9
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Figure 9. Dependence of the phonon damping γ on the exchange interaction constant J1 for
Rsp = 10 cm−1 and T = 40 K.

Figure 10. Dependence of the phonon energy ω on the magnetic field H for Rsp = −10 cm−1 and
T = 40 K.

exchange interaction J1 and mostly for different spin–phonon interaction constants Rsp. In
dependence of the sign of Rsp we obtain softening or hardening of the phonon modes with
decreasing temperature below the phase transition temperature TN. This is associated with
the magnetic ordering below TN and lattice anomalies caused by phonon modulation of the
exchange integral. Therefore, the phonon–phonon interactions cannot explain the observed
shift of the phonon modes. We suggest that the anharmonic spin–phonon interaction is
responsible for the anomalous behaviour of ω in the orthorhombic manganites RMnO3 and
the manganese-based compounds A2Mn2O7. The phonon energy and the phonon damping
show strong anomalies around the phase transition temperature TN which are due to the spin–
phonon interaction. With decrease in the spin–phonon coupling Rsp, i.e. decreasing radius of
the rare earth ion, the phonon frequency shifts towards higher values and the anomaly around
TN is smaller, for example for Y where the effect of magnetic ordering is much weaker. This

10
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Figure 11. Dependence of the phonon energy ω on the magnetic field H for Rsp = 10 cm−1 and
T = 40 K.

Figure 12. Dependence of the phonon damping γ on the magnetic field H for Rsp = −10 cm−1

and T = 40 K.

is in agreement with the experimental data of Laverdiere et al [8] in RMnO3 and those of
Granado et al [13] in A2Mn2O7. We obtain that the phonon damping is strongly dependent on
the exchange interaction constants J1, and on the spin–phonon interaction constants Rsp. It can
be very different in dependence on these interaction constants which are different for different
substances. So we could explain the different line widths of the experimental data of Granado
et al [9, 17]. The influence of an external magnetic field is discussed, too. The phonon energy
ω can be enhanced for large magnetic fields for Rsp < 0 and reduced for the opposite case,
Rsp > 0. The phonon damping γ always decreases with increasing magnetic field H .
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